Mechanism of α-synuclein translocation through a VDAC nanopore revealed by energy landscape modeling of escape time distributions.

نویسندگان

  • David P Hoogerheide
  • Philip A Gurnev
  • Tatiana K Rostovtseva
  • Sergey M Bezrukov
چکیده

We probe the energy landscape governing the passage of α-synuclein, a natural "diblock copolymer"-like polypeptide, through a nanoscale pore. α-Synuclein is an intrinsically disordered neuronal protein associated with Parkinson's pathology. The motion of this electrically heterogeneous polymer in the β-barrel voltage-dependent anion channel (VDAC) of the mitochondrial outer membrane strongly depends on the properties of both the charged and uncharged regions of the α-synuclein polymer. We model this motion in two ways. First, a simple Markov model accounts for the transitions of the channel between the states of different occupancy by α-synuclein. Second, the detailed energy landscape of this motion can be accounted for using a drift-diffusion framework that incorporates the α-synuclein binding energy and the free energy cost of its confinement in the VDAC pore. The models directly predict the probability of α-synuclein translocation across the mitochondrial outer membrane, with immediate implications for the physiological role of α-synuclein in regulation of mitochondrial bioenergetics. Time-resolved measurements of the electrical properties of VDAC occupied by α-synuclein reveal distinct effects of the motion of the junction separating the differently charged regions of the polymer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative analysis of the nanopore translocation dynamics of simple structured polynucleotides.

Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spe...

متن کامل

Polymer translocation dynamics in the quasi-static limit.

Monte Carlo (MC) simulations are used to study the dynamics of polymer translocation through a nanopore in the limit where the translocation rate is sufficiently slow that the polymer maintains a state of conformational quasi-equilibrium. The system is modeled as a flexible hard-sphere chain that translocates through a cylindrical hole in a hard flat wall. In some calculations, the nanopore is ...

متن کامل

Determination of Molecular Weights in Polyelectrolyte Mixtures Using Polymer Translocation through a Protein Nanopore

We introduce a single molecular analysis technique for the evaluation of molecular weight distributions of polyelectrolyte solutions by measuring translocation times of sodium polystyrenesulfonate (NaPSS) chains in a mixture passing through an α-hemolysin protein nanopore. The ionic current through an α-hemolysin nanopore is partially blocked transiently when the pore is occupied by a polymer c...

متن کامل

Dynamics of RNA Translocation through a Nanopore

We present a simplified model of the dynamics of translocation of RNA through a nanopore which only allows the passage of unbound nucleotides. In particular, we consider the disorder averaged translocation dynamics of random, two-component, single-stranded nucleotides, by reducing the dynamics to the motion of a random walker on a one-dimensional free energy landscape of translocation. These tr...

متن کامل

Intrinsic and membrane-facilitated α-synuclein oligomerization revealed by label-free detection through solid-state nanopores

α-Synuclein (α-Syn) is an abundant cytosolic protein involved in the release of neurotransmitters in presynaptic terminal and its aberrant aggregation is found to be associated with Parkinson's disease. Recent study suggests that the oligomers formed at the initial oligomerization stage may be the root cause of cytotoxicity. While characterizing this stage is challenging due to the inherent dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2017